KVM

5 things about FOSS Linux virtualization you may not know

In January I attended the 10th annual Southern California Linux Expo. In addition to speaking and running the Ubuntu booth, I had an opportunity to talk to other sysadmins about everything from selection of distribution to the latest in configuration management tools and virtualization technology.

I ended up in a conversation with a fellow sysadmin who was using a proprietary virtualization technology on Red Hat Enterprise Linux. Not only did he have surprising misconceptions about the FOSS (Free and Open Source Software) virtualization tools available, he assumed that some of the features he was paying extra for (or not, as the case may be) wouldn’t be in the FOSS versions of the software available.

Here are five features that you might be surprised to find included in the space of FOSS virtualization tools:

1. Data replication with verification for storage in server clusters

When you consider storage for a cluster there are several things to keep in mind:

  • Storage is part of your cluster too, you want it to be redundant
  • For immediate failover, you need replication between your storage devices
  • For data integrity, you want a verification mechanism to confirm the replication is working

Regardless of what you use for storage (a single hard drive, a RAID array, or an iSCSI device), the open source DRBD (Distributed Replicated Block Device) offers quick replication over a network backplane and verification tools you can run at regular intervals to ensure deta integrity.

Looking to the future, the FOSS distributed object store and file system Ceph is showing great promise for more extensive data replication.

2. Automatic failover in cluster configurations

Whether you’re using KVM Kernel-based Virtual Machine or Xen, automatic failover can be handled via a couple of closely integrated FOSS tools, Pacemaker and Corosync. At the core, Pacemaker handles core configuration of the resources themselves and Corosync handles quorum and “aliveness” checks of the hosts and resources and logic to manage moving Virtual Machines.

3. Graphical interface for administration

While development of graphical interfaces for administration is an active area, many of the basic tasks (and increasingly, more complicated ones) can be made available through the Virtual Machine Manager application. This manager uses the libvirt toolkit, which can also be used to build custom interfaces for management.

The KVM website has a list of other management tools, ranging from command-line (CLI) to Web-based: www.linux-kvm.org/page/Management_Tools

As does the Xen wiki: wiki.xen.org/wiki/Xen_Management_Tools

4. Live migrations to other hosts

In virtualized environments it’s common to reboot a virtual machine to move it from one host to another, but when shared storage is used it is also possible to do live migrations on KVM and Xen. During these live migrations, the virtual machine retains state as it moves between the physical machines. Since there is no reboot, connections stay intact and sessions and services continue to run with only a short blip of unavailability during the switch over.

Documentation for KVM, including hardware and software requirements for such support, can be found here: www.linux-kvm.org/page/Migration

5. Over-allocating shared hardware

KVM has the option to take full advantage of hardware resources by over-allocating both RAM (with adequate swap space available) and CPU. Details about over-allocation and key warnings can be found here: Overcommitting with KVM.

Conclusion

Data replication with verification for storage, automatic failover, graphical interface for administration, live migrations and over-allocating shared hardware are currently available with the FOSS virtualization tools included in many modern Linux distributions. As with all moves to a more virtualized environment, deployments require diligent testing procedures and configuration but there are many on-line resources available and the friendly folks at LinuxForce to help.

Posted by Elizabeth Krumbach in Development, Systems Management, Virtualization, 0 comments

An Infrastructure for Server Clusters for High Availability

As announced in our Cluster Services Built With FOSS post, LinuxForce’s Cluster Services are built exclusively with Free and Open Source Software (FOSS). Here is an expanded outline of the basic architecture of our approach to High-Availability (HA) clustering.

Overview

In any HA deployment there are two main components: hosts and guests. The hosts are the systems which are the core of the cluster itself. The host runs with very limited services dedicated for the use and functioning of the cluster. The host systems handle resource allocation, from persistent storage to RAM to the number of CPUs each guest gets. The host machines give an “outside” look at guest performance and give the opportunity to manipulate them from outside the guest operating system. This offers significant advantages when there are boot or other failures which traditionally would require physical (or at least console) access to debug. The guests in this infrastructure are the virtual machines (VMs) which will be running the public-facing services.

On the host, we define a number of “resources” to manage the guest systems. Resources are defined for ping checking the hosts, bringing up shared storage or storage replication (like drbd) as primary on one machine or the other and launching the VMs.

In the simplest case, the cluster infrastructure is used for new server deployments, in which case the operating system installs are fresh and the services are new. More likely a migration from an existing infrastructure will be necessary. Migrations from a variety of sources are possible including from physical hardware, other virtualization technologies (like Xen) or different KVM infrastructures which may already use many of the same core features, like shared storage. When a migration is required downtime can be kept to a minimum through several techniques.

Hardware configuration

The first consideration when you begin to build a cluster is the hardware. The basic requirement for a small cluster is 3 servers and a fast dedicated network backplane to connect the servers. The three servers can all be active as hosts, but we typically have a configuration where two machines are the hosts and a third, less powerful arbitrator system is available to make sure there is a way to break ties when there is resource confusion.

Two live resource hosts

These systems will be where the guests are run. They should be as similar as possible down to the selection of processor brand and amount of RAM and storage capabilities so that both machines are capable of fully taking over for the other in case of a failure, thus ensuring high availability.

The amount of resources required will be heavily dependent upon the services you’re running. When planning we recommend thinking about each guest as a physical machine and how many resources it needs, allowing room for inevitable expansion of services over time. You can over-commit both CPU and RAM on KVM, so you will want to read a best practices guide such as Chapter 6: Overcommitting with KVM. Disk space requirements and configuration will vary greatly depending upon your deployment, including the ability to use shared storage backplanes and replicated RAID arrays, but Linux Software RAID will typically be used for the core operating system install controlling each physical server. Additionally, using a thorough testing process so you know how your services will behave if they run out of resources is critical to any infrastructure change.

Tie-breaker (arbitrator)

A third server is required to complete quorum for the cluster. In our configuration this machine doesn’t need to have high specs or a lot of storage space. We typically use at least RAID1 so we have file system redundancy for this host.

1000M switch

A fast switch whose only job is to handle traffic between the three machines is highly recommended for assured speed of these two vital resources:

  1. Storage backplane
  2. Corosync/Pacemaker communication

It’s best to keep these off a shared network, which may be prone to congestion or failure, since fast speeds for both these resources are important for a properly functioning cluster.

Key software components

There are many options when it comes to selecting your HA stack, from which Linux distribution to use, to what storage replication system to use. We have selected the following:

Debian GNU/Linux

Like most LinuxForce solutions, we start with a base of Debian stable, currently Debian “Squeeze” 6.0. All of the software mentioned in this article comes from the standard Debian stable repository and is open source and completely free of charge.

Logical Volume Manager (LVM)

We use LVM extensively throughout our deployments for the flexibility of easy reallocation of filesystem resources. In a cluster infrastructure it is used to create separate disk images for each guest and then may be used again inside this disk image for partitioning.

Distributed Replicated Block Device (DRBD)

DRBD is used for replicating storage between the two hosts which have their own storage. Storage needs could also be met by shared storage or other data replication mechanisms.

Kernel-based Virtual Machine (KVM)

Since hardware-based virtualization is now ubiquitous on modern server hardware we use KVM for our virtualization technology. It allows fully virtualized VMs running their own unmodified kernels to run directly on the hardware without the overhead of a hypervisor or emulation.

Pacemaker & Corosync

Pacemaker and Corosync are used together to do the heavy lifting of the cluster management. The two services are deeply intertwined, but at the core Pacemaker handles core configuration of the resources themselves, and Corosync handles quorum and “aliveness” checks of the hosts and resources and determination of where resources should go.

Conclusion

We have deployed this infrastructure for mission critical services including DNS, FTP and web server infrastructures serving everything from internal ticketing systems to high-traffic public-facing websites. For a specific example of implementation of this infrastructure, see Laird Hariu’s report File Servers – The Business Case for High Availability where he covers the benefits of HA for file servers.

Image in this post by Jeannie Moberly, licensed under CC BY-SA 3.0.

Posted by Elizabeth Krumbach in Development, Systems Management, Tech Notes, Virtualization, 0 comments

One way to migrate Xen virtual machines to KVM in Debian

There are dozens of virtualization products on the market. When we launched our first high-availability cluster in early 2008 we chose Xen due to it’s ability to run on non-virtualized hardware, support in Debian 4.0 (Etch) and general flexibility. We’ve learned a lot about the upstream of Xen, including the challenges that Debian maintainers face, and we were increasingly drawn to another free and open source virtualization technology, Kernel Based Virtual Machine (KVM). The primary downside to KVM is that it requires special CPU hardware support to run, but this hardware support is now almost ubiquitous on modern servers. KVM has the advantage of being supported upstream in the Linux kernel itself, removing the onus of difficult kernel patching from the Debian Developers and has become the supported virtualization option for Ubuntu, Fedora and Red Hat. Additionally, KVM allows the guests to run unaltered, meaning you don’t need a special kernel and can run many OSes, from Linux to FreeBSD to Windows 7.

We still work on a number of machines which lack hardware virtualization support, but as our customers upgrade hardware we’ve begun moving production virtual machines from Xen to KVM. In tackling the migrations of these production virtual machines we encountered several challenges, the major ones being:

  • In Xen, partitions were created in separate logical volumes on the host and mounted by Xen itself and as a result we didn’t require Logical Volume Manager (LVM) within our Xen guests, in KVM the logical volume on the host for a virtual machine is a single disk image, not separate partitions.
  • In Xen, the kernel package is not installed, in KVM it is required
  • In Xen, you don’t have an independent bootloader on the OS, in KVM you need one to boot

The first step was to create a partition table on the new KVM image which is identical to the one on Xen. We wanted to use LVM within the guest, which required a Matryoshka (Russian) doll approach. First we’d create a volume group on the host to give us the typical flexibility of LVM host-side, and then we’d create one on the disk image giving us the flexibility required within the guest itself to expand any partitions. Finally we’d need to bootstrap the new system and copy the files over.

One way to go about all of this is a manual process. This solution would allow for scripting the procedure but requires a significant investment of time to get everything right so there is the least amount of down time possible. Since we only have a half dozen of these VMs to migrate in total, we looked for some way which already existed for handling all these steps in a familiar way, which is when we looked to the Debian Installer. Assuming a local mirror of core Debian packages (recommended), we could install a skeleton system on a test IP address which was properly partitioned, had LVM configured and bootstrapped in less than 20 minutes. We could then take this skeleton system that we’re sure is an functioning, bootable system and move the files over from the Xen installs, arguably decreasing our risk with each migration and the downtime required.

To get started, you’ll first need to calculate the total size of the current VM and lvcreate a slice of that size on the KVM system, then launch the Debian installer against the image using virt-install, something like:

virt-install --connect qemu:///system -n guest.example.com -r 768 -f /dev/mapper/VolumeGroup-guest.example.com -s 12 -c /var/lib/libvirt/images/debian-506-i386-netinst.iso --vnc --noautoconsole --accelerate --os-type linux --os-variant debianLenny

In this example we assume the debian-506-i386-netinst.iso is in /var/lib/libvirt/images/ and we want 768M of RAM, the information you put here is similar to the information that you would have previously defined in your /etc/xen/guest.example.com.cfg file for Xen.

Then use virt-manager to connect (we actually connected from a remote desktop running virt-manager) to the running install session (the standard Debian installer does not provide serial access) and install Debian, you will need the root password to launch the installer. Proceed to install.

When you get to the step to partition the disks, lay out the partition table to be identical to the VM you want to migrate to it except put it on LVM, put /boot on a separate partition outside of LVM. Complete the install, including installing grub.

Confirm that the system will boot and works on a test IP address and make a copy of your /etc/fstab to the host system, you’ll need this later.

You now have a skeleton install of Debian which runs on KVM with the LVM partitions you need.

To begin the actual data migration, you’ll want to mount the volumes within your new KVM disk, this can be done with the help of a great little mapping tool called kpartx. To map and activate the volume group on the guest, following these steps:

kpartx -av /dev/VolumeGroup/guest.example.com
vgscan
vgchange -ay guest

In this example we assume the Linux Volume on the host is called “guest.example.com” and the Linux Volume within the guest is called “guest”.

Now that the host can see the Volume Group on the guest, and all the Volumes in /dev/mapper/ you’ll want to mount them.

Once mounted, you’ll be able to start your rsync. To incur the least amount of downtime, you’ll want to rsync the large data partitions (like /srv, /home, /var, perhaps /usr) while your production host is still running. Note: All rsyncs completed during this process must be done with the “–numeric-ids” option so the permissions are not inherited from the host!

While you’re rsyncing the data, you’ll want to go into your Xen system and install the following packages (installing these will no impact your Xen system, it doesn’t strictly use them so it will simply ignore them):

  • linux-image-2.6-686
  • grub
  • lvm2

When you’ve completed moving the largest portions of your Xen guest, bring down the production Xen guest (downtime starts now!) and mount the filesystems. And begin rsyncing the data over (preferably over a crossover cable for the fastest transfer, remember to use –numeric-ids in your rsync).

Once the rsync is complete, edit the following files on the KVM host:

  • /mnt/guest/etc/fstab – use the version you saved to the host in a previous step
  • /mnt/guest/etc/inittab – uncomment the ttyS0 line to allow for serial access from the KVM host for virsh
  • /mnt/guest/etc/udev/rules.d/70-persistent-net.rules – comment out eth0 line so eth0 can come up on the new KVM MAC address

Unmount the filesystems on both sides and on the KVM side disable the volume group and use kpartx again to unmap the filesystem from the host:

sudo vgchange -an guest
sudo kpartx -dv /dev/VolumeGroup/guest.example.com

You’re now ready to boot the VM on the KVM side. This can be done with virt-manager or virsh.

Since you just moved the machines to a new server, and probably new MAC addresses, you will probably need to run the arping command to reclaim the IP address of the VM and all its service IP addresses.

Some things to confirm are working:

  • Networking (confirm there are no lingering arp caching issues)
  • Email (where applicable, confirm system messages etc are being sent)
  • All services running (confirm key services, review monitoring dashboard, log in via ssh)
  • Confirm that you have contiguous logs

Now that we’ve completed one of these migrations we have a lot of ideas about how to improve the process, including the possibility of making the whole process more scriptable, but this quick method leveraging the Debian installer for easier disk configuration and bootstrapping worked very well.

Posted by Elizabeth Krumbach in Debian, Systems Management, Tech Notes, Virtualization, 0 comments